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MRI analysis of cartilage matrix may play an important role in early detection and development of ther-
apeutic protocols for degenerative joint disease. Correlations between MRI parameters and matrix integ-
rity have been established in many studies, but the substantial overlap in values observed for normal and
for degraded cartilage greatly limits the specificity of these analyses. We implemented established mul-
tiparametric analysis methods to define data clusters corresponding to control and degraded bovine nasal
cartilage in two-, three-, and four-dimensional parameter spaces, and applied these results to discrimi-
nant analysis of a validation data set. Analyses were performed using the parameters (T1, T2, km, ADC),
where km is the magnetization transfer rate and ADC is the apparent diffusion coefficient. Results were
compared to univariate analyses. Multiparametric k-means clustering led to no improvement over uni-
variate analyses, with a maximum sensitivity and specificity in the range of 60–70% for the detection
of degradation using T1, and in the range of 80% sensitivity but only 36% specificity using the parameter
pair (T1, km). In contrast, model-based analysis using more general Gaussian clusters resulted in markedly
improved classification, with sensitivity and specificity reaching levels of 80–90% using the pair (T1, km).
Finally, a fuzzy clustering technique was implemented which may be still more appropriate to the con-
tinuum of degradation seen in degenerative cartilage disease. In view of its success in identifying mild
cartilage degradation, the formal multiparametric approach implemented here may be applicable to
the nondestructive evaluation of other biomaterials using MRI.

Published by Elsevier Inc.
1. Introduction

Cartilage degeneration, as seen in osteoarthritis, and the at-
tempt to develop therapeutics for degenerative cartilage disease,
are important examples of the use of MRI to characterize bioma-
terials. Indeed, the development of noninvasive MRI techniques
for the detection of early osteoarthritis and for monitoring thera-
peutic response to interventions has been the subject of intense
activity over recent years, with, however, limited success [1–3].
While changes in T1, T2, T1q, magnetization transfer ratio (MTR)
and rate (km), apparent diffusion coefficient (ADC), and T1 in the
presence of gadolinium (dGEMRIC) have been observed to
accompany cartilage degradation, with, for example, MTR and
km exhibiting somewhat enhanced specificity to changes in the
collagen component and the dGEMRIC index being preferentially
specific to proteoglycan [3–8], these MRI parameters exhibit
limited sensitivity to cartilage pathology and limited specificity
for particular cartilage matrix components. Even when a statisti-
cally significant difference in the arithmetic mean of a given MRI
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parameter is observed between control and pathologic cartilage
[9–11], there remains a substantial degree of overlap in parame-
ter values between groups.

Therefore, cartilage degeneration represents an ideal setting for
the application of multiparametric MRI evaluation of biomaterials.
We hypothesized that formal multiparametric analysis would im-
prove the sensitivity and specificity of MRI evaluation of cartilage
as compared to univariate analysis. We implemented two analytic
approaches to the classification of pathomimetically-degraded car-
tilage samples, discriminant analyses based on k-means clustering
and model-based clustering. k-Means clustering is based on the at-
tempted partition of a training set into disjoint subgroups about
distinct centroids. We took k = 2, indicating the presence of clus-
ters that correspond to control or to degraded cartilage, while
the number of MRI outcome measures incorporated into the char-
acterization of the data defines N. Classification of a validation set
sample is then determined by assignment to whichever of the two
clusters has the smaller N-dimensional Euclidean distance be-
tween its corresponding centroid and the sample’s coordinates in
normalized parameter space. In model-based cluster analysis, k
and N are defined in the same fashion, and a parameterized model
is developed to optimize the fitting of the sample distribution
within a training set. The model is then applied to a validation
set [12]. Sensitivities and specificities of these multiparametric
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analyses were compared with those of univariate analysis. In order
to render the results potentially applicable to the detection of early
cartilage degeneration, analysis was performed on samples sub-
jected to two mild enzymatic digestion protocols, using trypsin
and collagenase, respectively. Further, to limit the confounding
influence of spatial heterogeneity of the samples at this stage of
the development of the methodology, digestion was applied to
samples of bovine nasal cartilage (BNC). Finally, to demonstrate
the applicability of the model-based clustering approach to ranges
of cartilage degradation, such as is seen in OA, we implemented a
procedure based on probabilistic assignments to clusters.
2. Materials and methods

2.1. Sample preparation

Cartilage discs of 8 mm diameter were excised from nasal septa
of freshly slaughtered �6 month-old calves (Green Village Packing,
Green Village, NJ). After removal of a central 2.5 mm plug, 5–6
discs were threaded onto each of four hollow tubes, which were
then inserted into the wells of a susceptibility-matched four-well
sample holder containing DPBS buffer at pH 7.5 ± 0.1. Degradation
was performed by sample incubation in DPBS buffer with 1 mg/ml
trypsin (6 h; Sigma–Aldrich, St. Louis, MO) or 30 units/ml collage-
nase type II (16 h; Worthington Biochemical Corp., Lakewood, NJ)
at 37 �C in a 5% CO2 atmosphere, representing relatively mild
degradations. A total of 40 control, 40 trypsin-digested and 40
collagenase-digested samples were studied. Analysis was per-
formed separately on (i) 80 samples consisting of the controls plus
trypsin-degraded samples, and (ii) 80 samples consisting of the
controls plus collagenase-degraded samples. Control samples were
the same as those used for a previous study [14].
2.2. MRI measurements

Data were acquired using a 9.4T/105-mm Bruker DMX spec-
trometer (Bruker Biospin GmbH, Rheinstetten, Germany) equipped
with a 30-mm proton birdcage resonator. Images were taken from
0.5 mm-thick sagittal slices through the center of each of the four
wells in the sample holder, permitting all samples within a given
well to be imaged simultaneously. Sample temperature was
maintained at 4.0 ± 0.1 �C by cold air from a vortex tube (Exair,
Cincinnati, OH). T2 data were acquired using a 64-echo CPMG pulse
sequence with TR/TE = 5 s/12.8 ms. To perform T1 mapping, a
progressive saturation spin-echo sequence with TE = 12.8 ms was
employed, where TR was varied from 100 ms to 15 s in 12 steps.
MT data were obtained using the same spin-echo sequence pre-
ceded by a 6 kHz off-resonance saturation pulse of amplitude
B1 = 12 lT and pulse length tp incremented from 0.1 to 4.6 s in
eight steps. Measurements of apparent diffusion coefficient (ADC)
were performed with the diffusion-sensitizing gradients oriented
along the direction of the B0 field and perpendicular to the sample
surface. A spin-echo sequence was used (TR = 5 s), with the diffu-
sion-sensitizing pulses of duration d = 5 ms placed on either side
of the 180� refocusing pulse, and with a constant interval of
D = 13.8 ms between the gradient pulse centers. The diffusion-
sensitizing gradient strength was increased from 0 to 320 mT/m
in eight steps. Other MRI parameters included BW = 50 kHz,
NEX = 2, FOV = 4.0 � 1.5 cm (read � phase encode), matrix
size = 256 � 128, and resolution = 156 � 117 lm. The total acquisi-
tion time of these four measurements for samples in a four-well
sample holder was about 8 h.

Signal intensity was averaged over all pixels in a region of
interest (ROI) covering an entire BNC disk. Averaged intensities
were then fit to appropriate three-parameter monoexponential
functions to obtain T1, T2, MT ratio (MTR), T1sat, km = MTR/T1sat,
and ADC [13], which were calculated independently for each sam-
ple. The maximum coefficients of variation (CV) of fits of MR data
to appropriate functional forms have been reported previously
[14], and were 4%, 6%, 16% and 11% for T1, T2, km, and ADC, respec-
tively. The mean CVs were much smaller than these values. These
values are smaller than or on the order of sample heterogeneity
with respect to MRI parameters, indicating that fitting errors, due
either to finite SNR or potentially incorrect data models, are
negligible in our analysis. In terms of data models, we note that
multicomponent T2 relaxation can be observed in comparable sys-
tems [15]; we did not extend our analysis to incorporate this. In
addition, our experiments were not appropriate for delineating
multiple components in the T1, km and ADC data curves, given
the acquisition of only 8 or 12 data points.

2.3. Assessment of sensitivity and specificity

The two data sets analyzed (each with n = 80 samples total;
n = 40 control and n = 40 degraded) consisted of the control sam-
ples plus the trypsin-treated samples, and the same control sam-
ples plus the collagenase-treated samples. These two data sets
were analyzed entirely independently. The training set was formed
from a random selection of 53 out of 80 samples (equal to 2/3 of
the total), with the remaining samples serving as the validation
set [16]. In order to avoid potential chance selection of a particu-
larly favorable or unfavorable training set, 100 independent real-
izations of random training set selection were performed for
each analysis, and the results averaged and reported. Four classifi-
cation approaches were studied: (i) mean values, (ii) k-means clus-
tering, (iii) model-based discriminant analysis with restriction to
single-component clusters, and (iv) full model-based discriminant
analysis with multiple-component clusters permitted [17,18]. All
analyses were performed using the MCLUST package written in
the R language [19], and in-house designed routines written in
the MATLAB 7.4 programming language (The MathWorks Inc., Na-
tick, MA).

Sensitivity was defined in the usual way as the rate of true pos-
itives, that is, the number of correctly classified degraded samples
divided by the total number of degraded samples. Similarly, spec-
ificity was defined as the rate of true negatives, that is, the number
of correctly classified control samples divided by the total number
of controls.

2.4. Assignments using arithmetic means of individual MRI parameters

The mean value of a specified MRI parameter was calculated
separately for the control and degraded samples in the training
set. Each sample in the validation set was then classified as control
or degraded, depending upon which of these two means its MRI
parameter value was closer to. Although the quality of the model
is determined by the classification accuracy within the validation
set, the same classification procedure was also applied to the train-
ing set itself as an indicator of the maximal ability of arithmetic
means to distinguish between the control and degraded samples.

2.5. Assignments using multiparametric k-means clustering

In this approach, each sample is assigned an N-tuple defined by
a set of N measured parameters. The algorithm then partitions the
set of data points corresponding to the samples into k disjoint clus-
ters in N-dimensional Euclidean space, with each sample ulti-
mately assigned to the cluster for which the Euclidean distance
from the sample point to that cluster’s centroid is the minimum
over all clusters [18]. In our case, N = 2, 3, or 4, corresponding to
use of two or more of the measured parameters T1, T2, km, and
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ADC, while k = 2, corresponding to clusters being defined for con-
trol and for degraded tissue. Cluster definition was performed
using the training set data. Each validation set sample was then as-
signed to the control or the degraded group depending upon which
of the two cluster centroids its location in parameter space was
closer to. Analysis was performed using the same randomly-se-
lected training and validation sets as were used for the univariate
analyses. We used normalized parameter values in order to, in ef-
fect, assign equal weights to each measured parameter.

2.6. Assignments using model-based cluster analysis with and without
restriction to single-component clusters

A limitation of k-means clustering as described above is that all
clusters are by definition hyperspheres of equal volume; this
model however is appropriate only for a very limited set of data
distributions. A greater degree of flexibility in cluster morphology
is achieved by adopting a model-based algorithm, through which
each cluster is defined according to Gaussian components [20].
Each component, g, of a cluster is described as an N-dimensional
ellipsoid centered at mean lg and with an associated covariance
matrix Rg ¼ kgDgAgDT

g [17]. The indicated eigenvalue decomposi-
tion of Rg is written in terms of kg, which sets the volume of com-
ponent g, Dg, a matrix of eigenvectors defining its orientation, and
Ag, a diagonal matrix of the eigenvalues of Rg, defining its shape.
This approach was implemented using the MCLUST package, based
on the statistical software R [17], which examines several different
covariance structures, as defined by the volumes, orientations, and
shapes of Gaussian components. The selection of the appropriate
model for the training set data is performed through a maximum
likelihood approach in which the likelihood function for a particu-
lar Gaussian mixture model is calculated from the products of the
individual probabilities of the data points belonging to an assigned
cluster. The number of parameters in the likelihood function for a
Gaussian mixture model

Qn
i¼1

PG
g¼1sgugðxi;lg ;RgÞ, where

ugðxi;lg ;RgÞ denotes a cluster component described by a
multiparametric Gaussian density with mean lg and covariance
matrix of the data points assigned to g Rg, and with sg denoting
the probability that a multidimensional data point xi belongs to
this component, is selected for the training set according to the
Bayesian information criterion (BIC) [21]:

BIC ¼ 2� loglikelihood� number of model parameters

� log ðnumber of samplesÞ:

In this formulation, increased closeness of fit through additional
parameterization is penalized by model complexity, and the model
selected is the one for which the BIC is maximized. After model
specification through BIC maximization, validation samples are as-
signed to a subgroup according to that sample’s highest posterior
probability [12].

In addition to the analysis described above, a somewhat more
restrictive approach was also implemented in which the model-
based clusters were restricted to single components. This main-
tains contact with the k-means approach while permitting more
flexible cluster morphology.

2.7. Statistical analysis

Prior to multiparametric analysis, each MRI parameter set for
each treatment group was standardized to zero mean and unit var-
iance through the transformation pi ! ðpi � lÞ=r where pi is a
measured value of a given parameter for sample i, and l and r
are the calculated mean and standard deviation of the fpig. For
illustrative purposes, error ellipsoids were calculated for cluster
components from the covariance matrix, R, of sets of MRI parame-
ter values. These ellipsoids are contours of constant probability
density in parameter space, centered at the vector of parameter
means l, with the contour defined as the locus of points c in
parameter space that satisfy ðc � lÞ0R�1ðc � lÞ ¼ v2

pðaÞ. The direc-
ted lengths of the ellipsoid semi-axes are k

ffiffiffiffi
ki
p

ei, where k is the
square root of v2

pðaÞ and ki and ei are the eigenvalues and eigenvec-
tors of the covariance matrix. The value of v2

pðaÞ is calculated from
the v2 probability distribution with p degrees of freedom such that
the contour as defined above contains a proportion ð1� aÞ of the
probability distribution reflected by the cluster component model.
We have selected a ¼ 0:5 throughout. Finally, averages of MRI
parameters from non-degraded and degraded samples were re-
ported as ±SD with p < 0.05 evaluated by the two-tailed Student
t-test considered statistically significant.

2.8. Probabilistic assignment to clusters

A fuzzy clustering-based approach may represent a more realis-
tic classification procedure than binary discriminant analysis for
tissue samples with differing degrees of degradation. With this
approach, each sample is assigned with a certain probability to a
control or a degraded group with the sum of these two respective
probabilities equaling unity. We implemented this by reporting the
conditional probability of assignment to a cluster component
resulting from the expectation-maximization algorithm [12]. In
order to provide an unambiguous probability assignment, we
evaluated this for the case of single-component clusters; in
practice, given the similarity in the results shown in Tables 4 and
5, this is not a limitation.

3. Results

Fig. 1A shows a transverse slice from a spin-echo image of the
four-well sample holder. Slices (1.5 cm wide � 0.5 mm
thick � 4 cm in length along the well-axis) used for ROI definitions
are indicated by rectangular outlines. Fig. 1B shows ROI selection
within such a slice on a diffusion-weighted image of a single well
containing five BNC discs.

Table 1 shows MRI parameter means for the three groups stud-
ied. As expected, upon digestion with either collagenase or trypsin,
mean T1, T2 and ADC increased while km decreased [4]. For this
mild degradation protocol, there were no statistically significant
differences between the control BNC discs and the enzymatically
digested BNC samples for any of these MRI parameters, with the
exception of T1, for which the groups nevertheless differed by only
10%. These results indicate a limited capability of assigning
samples with unknown status into non-degraded and degraded
subgroups using any of these single parameters. This is demon-
strated explicitly in Table 2, showing the results of classification
according to arithmetic means calculated from training sets. Of
note is that there were no substantial differences between accu-
racy in classifying the validation as compared to the training sets
for any parameters, for both enzymatic degradation categories.
This lack of dependence of classification accuracy on the randomly
selected training sets indicates that the simple means model is not
highly constrained by the training set. For both enzymatic treat-
ments, classification via T1 resulted in the best results, with sensi-
tivity and specificity above 60%. This is consistent with the fact that
T1 was the only parameter showing significant differences between
the control and digested BNC samples (Table 1). The other param-
eters, T2, km and ADC, were all comparable to one another in perfor-
mance. As an example, although T2 and km are often considered as
being relatively specific markers for collagen content, classification
of collagenase-digested vs. control samples according to these
parameters did not result in particularly accurate results. Overall,
these analyses indicate the limited sensitivities and specificities



Fig. 1. Images of BNC samples within the 4-well sample holder following 6-h trypsin digestion. (A) Transverse slice showing all four wells in cross section. (B) Diffusion-
weighted image used for delineation of ROIs, as indicated.

Table 1
MRI parameter means in control and degraded BNC samples.

T1 (ms) T2 (ms) km (s�1) ADC (�10�4 mm2/s)

Control (n = 40)a 1208 ± 101 55.0 ± 11.1 0.87 ± 0.22 9.29 ± 1.00
6-h trypsin (n = 40) 1303 ± 93* 59.0 ± 10.3 0.82 ± 0.22 9.55 ± 1.02
16-h collagenase (n = 40) 1335 ± 108* 60.0 ± 12.0 0.82 ± 0.21 9.70 ± 0.91

* p < 0.05 control vs. trypsin-digested or control vs. collagenase-digested.
a Ref [14].

Table 2
Univariate classification of control and degraded BNC samples.

Category Parameter Training set Validation set

Sensitivitya Specificityb Sensitivity Specificity

Control vs. 6-h trypsin T1 0.67 ± 0.05 0.63 ± 0.06 0.67 ± 0.12 0.62 ± 0.13
T2 0.55 ± 0.05 0.55 ± 0.04 0.55 ± 0.17 0.53 ± 0.14
km 0.62 ± 0.08 0.45 ± 0.08 0.59 ± 0.16 0.43 ± 0.12
ADC 0.59 ± 0.05 0.56 ± 0.05 0.56 ± 0.13 0.56 ± 0.14

Control vs. 16-h collagenase T1 0.67 ± 0.04 0.69 ± 0.05 0.68 ± 0.11 0.68 ± 0.12
T2 0.48 ± 0.05 0.57 ± 0.05 0.46 ± 0.14 0.57 ± 0.15
km 0.59 ± 0.06 0.45 ± 0.07 0.55 ± 0.12 0.43 ± 0.11
ADC 0.6 ± 0.05 0.61 ± 0.06 0.58 ± 0.12 0.61 ± 0.17

The training set contains 53 randomly-selected samples while the remaining 27 samples form the validation set in all cases. Values shown are for the average of 100
independent selections of the training set and associated validation set.

a Sensitivity is defined as the ratio of correctly assigned degraded samples to the total number of degraded samples.
b Specificity is defined as the ratio of correctly assigned control samples to the total number of control samples.
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achieved through classification of these mildly-degraded samples
using arithmetic means of single MRI parameters.

Fig. 2 shows pairwise displays of the standardized values of T1,
T2, km and ADC and their corresponding error ellipses for control
and collagenase-treated samples. Fig. 2A illustrates the locus of
sample points as defined by (T1, km) pairs. The angle between the
semi-major axis of the error ellipse and the horizontal axis was
142� initially and decreased to 138� with degradation (clockwise
rotation; CW); this rotation was accompanied by a 29% reduction
in area. For (T1, T2) coordinates, the error ellipse retained an angle
of 50� after collagenase digestion, while the area increased by 8%
(Fig. 2B). Fig. 2C illustrates the corresponding result for (T2, km)
coordinates; the error ellipse rotated from 139� to 133� (CW) and
decreased in volume by 11% with digestion. The (T1, ADC) analysis
demonstrated an error ellipse rotation by 6� (CW), from 53� to 47�,
and a 10% reduction in area (Fig. 2D), while for (T2, ADC) coordi-
nates, the error ellipse rotated from 48� to 41� (CW) and gained
39% in area (Fig. 2E). Fig. 2F shows the analysis using (km, ADC);
in this case, the error ellipse again rotated minimally from 135�
to 137� (counterclockwise rotation; CCW), with a loss in area of
23%. Thus, collagenase digestion resulted in minimal rotations of
the error ellipses, that is, minimal changes in covariance matrix
structure, for a given pair of parameters, but a much larger range
of changes in area. Similar results were seen with trypsin digestion
(data not shown). Of course, whether error ellipse rotation is CW or
CCW merely reflects the display choice, but given that choice, indi-
cates the potential change in steepness of the dependence of one
variable on another.

Table 3 shows classification sensitivities and specificities of
control vs. trypsin-degraded samples achieved through use of mul-
tiparametric k-means clustering. As was also the case for the uni-
variate analysis, the accuracy in the validation set was essentially
indistinguishable from that in the training set. The sensitivity of
classification was greater than that of univariate classification
when using the parameter sets (T1, km) or (T1, km, ADC). However,
simultaneous improvement in sensitivity and specificity as com-
pared to univariate analysis was not achieved for any parameter
set. Similar results were obtained for collagenase-degraded sam-
ples (data not shown). Thus, analysis through use of simple k-
means clustering was of limited value in classification.



Fig. 2. Bivariate scatter plots of data acquired from control and collagenase-digested BNC samples. Covariance matrices for each pair of MRI parameters were calculated for
control (blue; O) and degraded (red; e) BNC samples. The corresponding error ellipses illustrate the relationship between the parameter pairs indicated. (A) (km, T1), (B) (T1,
T2), (C) (km, T2), (D) (T1, ADC), (E) (T2, ADC), and (F) (km, ADC) parameter pairs. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 3 shows plots of control and trypsin-degraded samples in 3-
dimensional parameter space, and the results of classification of a
validation set using model-based discriminant analysis as imple-
mented through MCLUST. The particular example shown is one
of the 100 random selections of the training set used to define sen-
sitivity and specificity of the parameter set (T1, T2, km).

As seen in Fig. 3A, for this particular selection of training set and
validation set, restriction to a single Gaussian component per cluster
resulted in sensitivity of 96% and specificity of 80% for the training
set, with lower values of 75% and 66.7%, respectively, being achieved
for the validation set (Fig. 3B). Accuracy was improved when the sin-
gle-component restriction was removed, with sensitivity of 96.4%
and specificity of 96% being achieved in the training set (Fig. 3C)
and 91.7% and 80%, respectively, in the validation set (Fig. 3D).
Table 4 is a tabulation of the results of the model-based ap-
proach in which clusters were restricted to a single component.
Clearly, overall performance was much improved as compared to
k-means clustering. For both enzymatic degradation protocols,
the most accurate classifications were obtained using the parame-
ter combinations (T1, km), (T1, T2, km), (T1, km, ADC) and (T1, T2, km,
ADC) with sensitivity and specificity of approximately 80% or
above for the training set and above 75% for the validation set.
These results clearly indicate that improved performance in both
training set and validation set classification is made possible by a
more flexible description of the dataset in parameter space. Of note
is that the decrease in classification accuracy for the validation set
as compared to the training set was somewhat more pronounced
than for classification based on arithmetic means and k-means



Table 3
Discriminant analysis of control and degraded BNC samples using k-means clustering.

Category Parameters Training set Validation set

Sensitivity Specificity Sensitivity Specificity

Control vs. 6-h trypsin (T1, T2) 0.63 ± 0.07 0.54 ± 0.08 0.63 ± 0.13 0.54 ± 0.13
(T1, km) 0.79 ± 0.07 0.38 ± 0.08 0.79 ± 0.12 0.36 ± 0.11
(T1, ADC) 0.7 ± 0.08 0.51 ± 0.1 0.69 ± 0.11 0.49 ± 0.15
(T2, km) 0.52 ± 0.17 0.54 ± 0.17 0.44 ± 0.19 0.48 ± 0.21
(T2, ADC) 0.68 ± 0.1 0.46 ± 0.09 0.63 ± 0.17 0.43 ± 0.14
(km, ADC) 0.63 ± 0.2 0.44 ± 0.18 0.57 ± 0.23 0.38 ± 0.21
(T1, T2, km) 0.68 ± 0.1 0.44 ± 0.1 0.66 ± 0.16 0.41 ± 0.12
(T1, T2, ADC) 0.68 ± 0.1 0.49 ± 0.11 0.66 ± 0.15 0.47 ± 0.14
(T1, km, ADC) 0.73 ± 0.1 0.42 ± 0.1 0.71 ± 0.16 0.38 ± 0.13
(T2, km, ADC) 0.61 ± 0.16 0.46 ± 0.14 0.54 ± 0.2 0.41 ± 0.14
(T1, T2, km, ADC) 0.67 ± 0.13 0.45 ± 0.11 0.62 ± 0.18 0.42 ± 0.13

Analysis was performed using the same training and validation sets as for Table 2. Values shown are for the average of 100 independent selections of the training set and
associated validation set.

Fig. 3. Model-based discriminant analysis based on MCLUST partitioning of control (blue; O) and trypsin-degraded (red; e) BNC samples. Models were developed based on
53 samples selected randomly from the total set of 80, with the remaining 27 samples forming the validation set shown. The MRI parameters T1, T2 and km are shown here for
illustrative purposes. Error ellipsoids represent the 50% confidence surface. Incorrectly classified samples are indicated by solid symbols. Panels A and B illustrate the results
with clusters restricted to single components, while Panels C and D illustrate clusters formed from multiple (two, in this case) components. Panel A: training set; five samples
in the control group (specificity 80%) and one sample in the trypsin-degraded group (sensitivity 96.4%) were misclassified using single-component clusters. Panel B:
validation set, with five control and three degraded samples being misclassified, resulting in sensitivity and specificity of 75% and 67%, respectively, using single-component
clusters. Panel C: training set; a single sample in both the control and degraded groups were misclassified, resulting in a sensitivity of 96.4% and a specificity of 96% using
multiple-component clusters. Panel D: validation set, with three control samples and one degraded sample being misclassified, resulting in sensitivity and specificity of 91.7%
and 80%, respectively, using multiple-component clusters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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clustering. This is consistent with the more highly constrained fit-
ting of the data by the constructed model.

Table 5 shows the results of model-based classification in which
the restriction to single-component clusters was removed. As
shown, this resulted in further improvement in the sensitivity
and specificity of training set classification, but not in classification
in the validation set. The parameter combinations (T1, km), (T1, T2,
km) and (T1, km, ADC) again performed better than classification
according to any single parameter or parameter combination using
arithmetic means or k-means clustering. As for the analysis with
single-component clusters, the sensitivities and specificities in
the validation sets were lower than for the training sets. This, to-
gether with relatively large standard deviations, indicates that this
model-based algorithm was sensitive to the random selection of
validation data points via construction of a relatively highly-con-
strained model.

We performed an additional analysis of all 120 samples (n = 40
control, n = 40 trypsin-degraded, n = 40 collagenase-degraded) ta-
ken together, to determine the accuracy of assignment to the con-
trol group or the degraded group, with the degraded group now
comprised of both of the enzymatically-degraded sets of samples.
The training set again consisted of a random selection of 2/3 of
the entire set of samples, and the results of 100 independent ran-
dom assignments to training set and validation set were averaged.



Table 4
Discriminant analysis of control and degraded BNC samples using single-component Gaussian clusters.

Category Parameters Training set Validation set

Sensitivity Specificity Sensitivity Specificity

Control vs. 6-h trypsin (T1, T2) 0.74 ± 0.07 0.65 ± 0.06 0.68 ± 0.13 0.61 ± 0.12
(T1, km)* 0.84 ± 0.04 0.79 ± 0.06 0.81 ± 0.11 0.78 ± 0.11
(T1, ADC) 0.68 ± 0.08 0.65 ± 0.07 0.61 ± 0.13 0.59 ± 0.12
(T2, km) 0.61 ± 0.15 0.53 ± 0.16 0.51 ± 0.16 0.43 ± 0.18
(T2, ADC) 0.61 ± 0.06 0.75 ± 0.07 0.60 ± 0.13 0.69 ± 0.13
(km, ADC) 0.65 ± 0.16 0.59 ± 0.21 0.54 ± 0.18 0.52 ± 0.20
(T1, T2, km)* 0.86 ± 0.04 0.80 ± 0.06 0.81 ± 0.11 0.75 ± 0.11
(T1, T2, ADC) 0.73 ± 0.08 0.76 ± 0.06 0.67 ± 0.14 0.65 ± 0.15
(T1, km, ADC)* 0.86 ± 0.04 0.82 ± 0.05 0.80 ± 0.11 0.77 ± 0.11
(T2, km, ADC) 0.64 ± 0.08 0.77 ± 0.09 0.55 ± 0.14 0.63 ± 0.15
(T1, T2, km, ADC)* 0.89 ± 0.04 0.85 ± 0.05 0.83 ± 0.11 0.77 ± 0.12

Control vs. 16-h collagenase (T1, T2) 0.75 ± 0.08 0.73 ± 0.05 0.72 ± 0.13 0.66 ± 0.14
(T1, km)* 0.91 ± 0.03 0.92 ± 0.04 0.90 ± 0.08 0.90 ± 0.07
(T1, ADC) 0.73 ± 0.05 0.68 ± 0.06 0.70 ± 0.13 0.65 ± 0.13
(T2, km) 0.59 ± 0.11 0.55 ± 0.14 0.51 ± 0.16 0.45 ± 0.15
(T2, ADC) 0.57 ± 0.08 0.69 ± 0.09 0.51 ± 0.14 0.61 ± 0.16
(km, ADC) 0.68 ± 0.08 0.48 ± 0.14 0.59 ± 0.15 0.38 ± 0.14
(T1, T2, km)* 0.94 ± 0.04 0.96 ± 0.03 0.89 ± 0.08 0.92 ± 0.08
(T1, T2, ADC) 0.79 ± 0.05 0.71 ± 0.06 0.75 ± 0.12 0.65 ± 0.12
(T1, km, ADC)* 0.95 ± 0.02 0.94 ± 0.03 0.89 ± 0.09 0.91 ± 0.08
(T2, km, ADC) 0.66 ± 0.07 0.63 ± 0.11 0.59 ± 0.13 0.48 ± 0.16
(T1, T2, km, ADC)* 0.96 ± 0.04 0.96 ± 0.03 0.89 ± 0.08 0.90 ± 0.09

Analysis was performed using the same training and validation sets as for Table 2. Values shown are for the average of 100 independent selections of the training set and
associated validation set.
* Indicates that classification using the indicated parameters results in improved sensitivity and specificity as compared to the optimal univariate analysis using T1, for both
the training and validation sets.

Table 5
Discriminant analysis of control and degraded BNC samples using multiple-component Gaussian clusters.

Category Parameters Training set Validation set

Sensitivity Specificity Sensitivity Specificity

Control vs. 6-h trypsin (T1, T2) 0.75 ± 0.1 0.77 ± 0.1 0.65 ± 0.18 0.58 ± 0.18
(T1, km)* 0.88 ± 0.04 0.87 ± 0.06 0.79 ± 0.16 0.79 ± 0.15
(T1, ADC) 0.72 ± 0.1 0.78 ± 0.1 0.6 ± 0.17 0.6 ± 0.22
(T2, km) 0.74 ± 0.11 0.71 ± 0.12 0.51 ± 0.19 0.53 ± 0.19
(T2, ADC) 0.67 ± 0.11 0.78 ± 0.08 0.53 ± 0.17 0.66 ± 0.18
(km, ADC) 0.75 ± 0.1 0.76 ± 0.09 0.58 ± 0.17 0.53 ± 0.18
(T1, T2, km)* 0.94 ± 0.04 0.92 ± 0.06 0.78 ± 0.23 0.72 ± 0.26
(T1, T2, ADC) 0.84 ± 0.12 0.89 ± 0.1 0.54 ± 0.32 0.64 ± 0.31
(T1, km, ADC)* 0.94 ± 0.04 0.95 ± 0.04 0.74 ± 0.29 0.72 ± 0.26
(T2, km, ADC) 0.81 ± 0.13 0.86 ± 0.11 0.52 ± 0.31 0.57 ± 0.27
(T1, T2, km, ADC) 0.96 ± 0.05 0.96 ± 0.05 0.48 ± 0.39 0.79 ± 0.29

Control vs. 16-h collagenase (T1, T2) 0.81 ± 0.05 0.79 ± 0.07 0.69 ± 0.17 0.62 ± 0.18
(T1, km)* 0.96 ± 0.03 0.95 ± 0.03 0.89 ± 0.1 0.86 ± 0.12
(T1, ADC)* 0.89 ± 0.05 0.87 ± 0.06 0.84 ± 0.12 0.77 ± 0.19
(T2, km) 0.67 ± 0.09 0.72 ± 0.11 0.5 ± 0.15 0.53 ± 0.17
(T2, ADC) 0.69 ± 0.1 0.84 ± 0.07 0.63 ± 0.16 0.71 ± 0.2
(km, ADC) 0.72 ± 0.11 0.73 ± 0.15 0.6 ± 0.18 0.45 ± 0.18
(T1, T2, km)* 0.98 ± 0.03 0.99 ± 0.02 0.79 ± 0.24 0.83 ± 0.23
(T1, T2, ADC) 0.92 ± 0.06 0.92 ± 0.07 0.76 ± 0.27 0.68 ± 0.32
(T1, km, ADC)* 0.99 ± 0.02 0.99 ± 0.02 0.9 ± 0.19 0.79 ± 0.26
(T2, km, ADC) 0.81 ± 0.12 0.85 ± 0.09 0.63 ± 0.25 0.53 ± 0.26
(T1, T2, km, ADC)* 0.99 ± 0.03 0.99 ± 0.03 0.74 ± 0.34 0.76 ± 0.32

Analysis was performed using the same training and validation sets as for Table 2. Values shown are for the average of 100 independent selections of the training set and
associated validation set.
* Indicates that classification using the indicated parameters results in improved sensitivity and specificity as compared to the optimal univariate analysis using T1, for both
the training and validation sets.
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The results were qualitatively and quantitatively comparable to
those described above for discrimination between the set of con-
trols and a set of samples degraded by either trypsin or collage-
nase. T1 was again the best univariate classifier, while use of the
parameter combinations (T1, km), (T1, T2, km) and (T1, km, ADC) re-
sulted in markedly improved classification in both training and
validation sets.

As discussed, fuzzy cluster analysis may be more applicable
than binary classification to account for the variability in matrix
composition across individual samples as well as the graded tissue
degradation characteristic of osteoarthritis. Results from this ap-
proach are shown in Table 6. Since probabilistic assignments are
given for each particular sample, aggregate sensitivity and specific-
ity of assignment to a particular group is no longer the appropriate
outcome measure. Table 6 therefore shows, for the control + tryp-
sin-degraded samples, and separately for the control + collage-
nase-degraded samples, the probability of assignment of each
validation set sample to the control or degraded group clusters, de-



Table 6
Cluster membership probabilities for validation samples.

Control + trypsin degraded Control + collagenase degraded

Parameters (T1, km) (T1, km, ADC) (T1, km) (T1, km, ADC)

Assigned to
control
group

Assigned to
trypsin degraded
group

Assigned to
control
group

Assigned to
trypsin degraded
group

Assigned to
control
group

Assigned to
collagenase
degraded group

Assigned to
control
group

Assigned to
collagenase
degraded group

Control samples 0.78 0.22 0.85 0.15 0.99 0.01 1.00 0.00
0.18 0.82 0.05 0.95 0.19 0.81 1.00 0.00
1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.98 0.02 0.99 0.01 1.00 0.00 1.00 0.00
0.03 0.97 0.04 0.96 1.00 0.00 1.00 0.00
0.83 0.17 0.80 0.20 1.00 0.00 0.99 0.01
0.99 0.01 0.99 0.01 0.99 0.01 0.98 0.02
0.99 0.01 0.99 0.01 1.00 0.00 1.00 0.00
0.21 0.79 0.30 0.70 0.32 0.68 0.70 0.30
0.33 0.67 0.34 0.66 0.58 0.42 0.60 0.40
0.57 0.43 0.61 0.39 0.90 0.10 0.94 0.06
0.98 0.02 0.99 0.01 0.97 0.03 0.99 0.01
0.71 0.29 0.72 0.28 0.95 0.05 0.95 0.05
0.40 0.60 0.46 0.54 0.95 0.05 0.98 0.02
0.70 0.30 0.72 0.28 0.99 0.01 0.99 0.01

Average 0.64 0.36 0.66 0.34 0.85 0.15 0.94 0.06

Degraded samples
(Trypsin or
Collagenase)

0.17 0.83 0.27 0.73 0.11 0.89 0.39 0.61
0.07 0.93 0.14 0.86 0.07 0.93 0.09 0.91
0.16 0.84 0.28 0.72 0.06 0.94 0.02 0.98
0.00 1.00 0.00 1.00 0.99 0.01 0.90 0.10
0.07 0.93 0.09 0.91 0.04 0.96 0.01 0.99
0.09 0.91 0.14 0.86 0.16 0.84 0.02 0.98
0.30 0.70 0.41 0.59 0.16 0.84 0.09 0.91
0.70 0.30 0.80 0.20 0.01 0.99 0.01 0.99
0.04 0.96 0.06 0.94 0.10 0.90 0.00 1.00
0.02 0.98 0.01 0.99 0.01 0.99 0.00 1.00
0.50 0.50 0.33 0.67 0.04 0.96 0.00 1.00
0.11 0.89 0.00 1.00 0.00 1.00 0.00 1.00

Average 0.19 0.81 0.21 0.79 0.15 0.85 0.30 0.70

Fuzzy clustering membership probabilities calculated as described in the text. The left four columns describe the results for the control + trypsin group, while the right four
columns present findings for the control + collagenase group. For each of these, results are shown for each sample individually in a validation set consisting of 27 samples,
with model parameters being defined from a training set of 53 samples. Results are shown for the pair (T1, km) and (T1, km, ADC), corresponding to sets providing favorable
classification results (Tables 4 and 5). The averages of the calculated probabilities across samples are also presented, indicating the overall degree to which the samples were
similar to controls or to degraded samples in terms of the parameter sets tested. Note that probability values for individual samples or averages which are not close to one or
zero do not necessarily indicate classification difficulty or inadequacy of the model. Rather, such values are consistent with the graded nature of both the control and
degraded samples.
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fined according to the model-based discriminant approach. Out of
the eleven possible parameter combinations, we chose the two
that exhibited the greatest classification ability according to Table
5, namely (T1, km) and (T1, km, ADC). The centroids and model
parameters of these clusters were again defined by 53 randomly-
selected training set samples taken from the full group of
controls + degraded samples. It is clear that the strength of the
assignments varies among samples within a given group (control
vs. trypsin-degraded; control vs. collagenase-degraded), reflecting
tissue variability and the variability of the degradation, and the fact
that MR parameter values vary continuously within both groups of
samples. For example, the first control sample from the con-
trol + trypsin group was assigned with a probability of 0.78 to
the control group, with a corresponding probability of 0.22 of
assignment to the degraded group, according to the pair (T1, km).
The corresponding probabilities were 0.85 and 0.15 for classifica-
tion according to the triplet (T1, km, ADC). Similarly, the first de-
graded sample from the control + collagenase group was assigned
with a probability of 0.11 to the control group, with a correspond-
ing probability of 0.89 for assignment to the degraded group. The
corresponding probabilities were 0.39 and 0.61 for assignment
according to the triplet (T1, km, ADC). The means of the assignment
probabilities are also shown, and indicate the degree to which
samples were assigned to groups according to the parameter sets
indicated. We note that somewhat higher average assignment
accuracy was achieved through use of the extended parameter
set (T1, km, ADC) as compared to (T1, km) for the collagenase-de-
graded samples, indicating that the ADC measurement was sensi-
tive to additional tissue manifestations of the degradative
process. The addition of the ADC measurement was less effective
for the trypsin degradation, indicating that the effect of this degra-
dation on ADC was already adequately reflected in the (T1, km) pair.
Table 7 shows the summary results for all 11 parameter combina-
tions; these again indicate the average probability of assignment to
the indicated groups for the 27 validation samples. For example,
using the parameter pair (T1, T2), the control samples were as-
signed to the control group with an average probability of 58% with
the average assignment to the trypsin-degraded group therefore
equaling 42%, while the trypsin-degraded samples were assigned
to the trypsin-degraded group with an average probability of 59%
with the average assignment to the control group therefore equal-
ing 41%. It is important to emphasize that assignment probabilities
substantially less than 100% do not necessarily reflect classification
inaccuracies or other errors in the fuzzy clustering approach, but
rather such values are to be expected and are consistent with ac-
tual sample heterogeneity.
4. Discussion

Noninvasive assessment of material properties is of substantial
importance in biomedicine. Of available technologies, MRI is per-



Table 7
Means of cluster membership probabilities for validation samples.

Assigned to
control group

Assigned to trypsin
degraded group

Assigned to
control group

Assigned to collagenase
degraded group

Control samples (T1, T2) 0.58 0.42 0.70 0.30
(T1, km) 0.64 0.36 0.85 0.15
(T1, ADC) 0.60 0.40 0.76 0.24
(T2, km) 0.52 0.48 0.54 0.46
(T2, ADC) 0.59 0.41 0.60 0.40
(km, ADC) 0.53 0.47 0.57 0.43
(T1, T2, km) 0.67 0.33 0.91 0.09
(T1, T2, ADC) 0.63 0.37 0.77 0.23
(T1, km, ADC) 0.66 0.34 0.94 0.06
(T2, km, ADC) 0.60 0.40 0.64 0.36
(T1, T2, km, ADC) 0.71 0.29 0.94 0.06

Degraded samples (Trypsin or Collagenase) (T1, T2) 0.41 0.59 0.39 0.61
(T1, km) 0.19 0.81 0.15 0.85
(T1, ADC) 0.47 0.53 0.31 0.69
(T2, km) 0.54 0.46 0.54 0.46
(T2, ADC) 0.42 0.58 0.45 0.55
(km, ADC) 0.49 0.51 0.55 0.45
(T1, T2, km) 0.24 0.76 0.14 0.86
(T1, T2, ADC) 0.40 0.60 0.28 0.72
(T1, km, ADC) 0.21 0.79 0.13 0.87
(T2, km, ADC) 0.48 0.52 0.51 0.49
(T1, T2, km, ADC) 0.23 0.77 0.13 0.87

Average values for assignment probabilities of validation set samples for all eleven parameter combinations, calculated as in Table 6. Again, values between zero and one
indicate sample variation, rather than inadequacy of the classification model.
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haps the most widely applied due to the availability of a number of
outcome measures which reflect a variety of biophysical character-
istics. In this work we applied multiparametric cluster analysis to
the problem of detecting early cartilage degradation. Such detec-
tion is an area of extensive ongoing investigation, and is regarded
as a potentially essential component in the development of suc-
cessful therapeutic approaches [22]. MRI-based studies of cartilage
status often focus on changes in any one of several parameters,
each of which is separately associated to a greater or lesser extent
with particular aspects of cartilage degeneration. Characterization
of cartilage using this approach in effect relies upon group mean
changes in the parameter under investigation; that is, an observed
parameter value is compared, explicitly or implicitly, to normative
values for that parameter. However, this approach has met with
limited success, with a great deal of overlap seen between param-
eter values observed for normal and diseased cartilage.

A study by Laurent et al. showed that while a 36-h collagenase
digestion of both bovine nasal and articular cartilage resulted in
50% decreases in mean MTR and km, there was substantial overlap
between the control and treatment groups, with the maximum val-
ues of MTR and km in the collagenase-treated group greater than
the smallest values in the control group for both types of tissue
[4]. Similarly, comparable studies of the rabbit knee found that
although mean T1 increased with degradation, the maximum T1

in control cartilage and the minimum T1 of papain-degraded carti-
lage were �680 and �480 ms, respectively [7]. Indeed, half of the
total data points obtained were within this region of T1 overlap.
In a study of chondroitinase-ABC treatment of neocartilage devel-
oping under a tissue engineering protocol, Chen et al. found that
although the maximum transverse relaxation rate R2 = 1/T2 of con-
trols was 25% higher than that of chondroitinase treated samples,
the minimum R2 values were the same for the two groups [8]. It
was also found that approximately half of the fixed charged den-
sity (FCD) values of the chondroitinase-treated samples were close
to the FCD mean of the control group.

In view of the limitations of univariate classification, we under-
took a study of multiparametric classification of cartilage under
pathomimetic degradation protocols. Multiparametric analyses al-
low several variables to be considered simultaneously; in addition,
they provide quantitative relationships between different mea-
sured parameters, as well as quantitative measures of data cluster
morphology and cluster movement secondary to intervention. Re-
lated methodologies have been widely applied to MR analysis of
other tissues such as breast and brain [23,24]. We studied several
approaches, including classification based on the arithmetic means
of MRI parameters, multiparametric k-means clustering, and mod-
el-based discriminant analyses, restricted to single-component
clusters and without such restriction. Sensitivity and specificity
to degradation were evaluated quantitatively for each of these
for trypsin- and collagenase-digested samples.

Our main interest is in the effectiveness of the multiparametric
cluster approach to detect early stages of cartilage degradation,
when other analyses such as morphologic evaluation and unvariate
analysis are of limited value. We therefore used relatively mild
enzymatic degradation protocols. This contrasts with our previous
study [14], in which a greater degree of cartilage degradation was
induced through use of longer incubation times, as evidenced by
larger changes in MR parameters from controls in the degraded tis-
sues (compare Table 1 of Ref. [14] with Table 1 of the present
study). In the setting of more pronounced degradation, certain uni-
variate analyses achieved fairly high degrees of accuracy [14].
However, with milder degradation as employed in the present
manuscript, the accuracy of the univariate approach was much
more limited, as shown by comparing Table 2 of Ref. [14] with Ta-
ble 2 of the present study.

Although BNC exhibits a greater degree of homogeneity than
does articular cartilage, tissue inhomogeneity was evident both
prior to, and especially after, enzymatic degradation; this is evi-
dent in Fig. 1b. The general magnitude of these effects can be deter-
mined from previous Fourier transform imaging spectroscopic
studies of BNC [25]. In that study, trypsin degradation resulted in
CV of 24% for the spatial distribution of collagen, and 43% for PG
distribution. The inhomogeneities resulting from biological varia-
tion in the control tissue and nonuniformity of sample degradation,
which contribute to an overlap in the data between the control and
degraded groups, present an additional challenge to the classifica-
tion analysis. However, such heterogeneities are also a given even
in non-degraded articular cartilage due to its layered architecture,
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with further heterogeneity being characteristic of osteoarthritic
cartilage. Thus, the success of the classification scheme imple-
mented here indicates its likely applicability to articular cartilage
as well.

Our approach of multiple sample imaging led to use of a large
imaging volume, so that B1 inhomogeneity is also evident. We
did not expect this image shading to affect the derivation of MR
parameters based on fitted data curves, and indeed, analysis indi-
cated that parameters derived from samples exhibiting shading
did not differ in any systematic way from those derived from sam-
ples located more centrally in the coil.
4.1. Classification based on arithmetic means and multivariate k-
means clustering

Although changes in mean MR parameter values were observed
upon degradation with both trypsin and collagenase, there was a
large degree of overlap between group values, resulting in limited
classification accuracy using the arithmetic mean of any one param-
eter. We then implemented k-means clustering as one of the sim-
plest and most widely applied approaches to multiparametric
classification. However, even with the inclusion of up to four MRI
parameters, k-means clustering did not yield greater classification
accuracy than did simple arithmetic means. We again attribute this
to parameter overlap, as well as the inability of this algorithm to
distinguish between different cluster morphologies. An additional
limitation of the k-means algorithm is its sole reliance on minimiza-
tion of the Euclidian distance between sample point positions and
cluster centroids, resulting in convergence to uniform density
hyperspherical clusters. This imposes a strong constraint on the
types of datasets most appropriately modeled, with poorer perfor-
mance therefore expected for non-uniform density, non-hyper-
spherical, data clusters, such as seen in the present case.
4.2. Classification based on model-based clustering

In contrast to the k-means approach, the model-based cluster-
ing algorithm implemented here assigns clusters based on maxi-
mizing the probability of obtaining the observed data as a
function of cluster assignment [17]. The models available through
MCLUST permit independent variation of cluster component vol-
umes, shapes, and orientations; this approach also permits the
inclusion of more than one independent Gaussian component for
a given cluster, as illustrated in Fig. 3. For the particular data rep-
resented in that figure, the full model-based procedure identified
two ellipsoidal components for both the control samples and the
trypsin-degraded samples.

The ability to classify the data through selection of multiple
parameters characterizing the clusters resulted in improved sensi-
tivity and specificity. Because the models are developed to most
closely fit the training set, there is generally more misclassification
in the validation set than in the training set. For the same reason,
model parameters resulting in the best classification rates for the
training set do not always result in the best possible classification
accuracy in the validation set.

We performed additional analyses in which the ratio of the size
of the training set to the size of the validation set was varied. We
found that results for validation set classification improved as
the proportional size of the training set increased from 1/4 to
approximately 2/3 of the total number of samples. Results did
not improve for training sets comprised of proportions of the data
greater than this. We note that results for the validation set as de-
fined by our analysis may underestimate actual sensitivity and
specificity, since the training set represents only a subset of the full
data set [16]. Nevertheless, error rates for the (T1, km), (T1, T2, km)
and (T1, km, ADC) parameter combinations demonstrated classifica-
tion accuracy beyond the results for any of the univariate analyses.

The classification approaches described here indicate the poten-
tial for multiparametric detection of early cartilage degeneration.
Other approaches may be of additional benefit and remain to be
explored. The assumption of Gaussian sample point distribution
can be relaxed through use of non-Gaussian clustering algorithms
[26]. The potential advantages of such an approach, especially
when weighed against the additional complexity of the analysis,
would depend upon more formal analysis of sample point distribu-
tion in parameter space. Further, we note that clinical diagnostic
studies may depend upon establishing multiparametric data sets
for normative tissue.

We used ROI’s which were voxel averages for MRI parameter
determination, in effect increasing the SNR of the data to be fit. In-
deed, data averaging is one of a number of experimental details
determining the SNR of a data set, including, for example, voxel size
(including the effects of voxel averaging), field strength, coil quality,
and number of acquisitions. A limitation of our study is that we did
not perform a formal analysis of the SNR requirements for given de-
grees of classification accuracy. However, no significant difference
in SNR was observed between control and degraded samples. Sim-
ilarly, although the BNC samples studied in the present manuscript
do not exhibit the anisotropy characteristic of articular cartilage, we
are not aware of magnetic resonance studies properly documenting
changes in cartilage anisotropy as a function of degradation. There-
fore, it is not clear to what extent the more organized structure of
articular samples would impact, or provide an additional parameter
of interest for, the multiparametric approach.

Although the emphasis in the present study was on the explo-
ration of multiparametric analytic techniques, we note that our
univariate analysis indicated that of single parameters, classifica-
tion according to T1 showed the greatest accuracy. This somewhat
surprising result was also found in an extensive comparable anal-
ysis of more strongly degraded cartilage [14]. This finding appears
to be attributable to the relatively small CV of the observed T1 val-
ues. Variability in results for all parameters is expected to result
from intrinsic sample inhomogeneity, spatial and temporal vari-
ability of enzymatic degradation, and finite precision of the MRI
experiment itself. The relatively low CV of the T1 measurement,
then, may be due to the relative lack of sensitivity of T1 to small
cartilage matrix variations.

In order to extend the discriminant analysis to graded tissue
properties, such as is characteristic of degenerative cartilage in
general, we implemented a fuzzy-clustering procedure. Classifica-
tion models were again established using a training set, but each
sample in the validation sets was individually assigned in a proba-
bilistic fashion to either the control or degraded group. As expected
with samples exhibiting both biological variability and varying de-
grees of degradation due, for example, to differing sample sizes, the
sample-by-sample assignments vary across a range of probabili-
ties. We calculated mean assignment probabilities across the 27
validation samples for each of the 11 parameter sets; the results
show consistency but not complete agreement. This indicates that
the probability of assignment to a control or a degraded group is a
function of the parameters evaluated, as would be expected. We
note that a fuzzy cluster approach to tissue classification would
also be appropriate for the analysis of articular cartilage, which is
heterogeneous even absent degradation.

In conclusion, the sensitivity and specificity of a hierarchy of
data clustering techniques to pathomimetic degradation of carti-
lage were evaluated. Univariate classification, as is implicitly used
in most contemporary studies, as well as k-means clustering exhib-
ited limited ability to discriminate between control and degraded
tissue. Use of multiparametric model-based discriminant analysis,
on the other hand, resulted in substantial improvement in classifi-
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cation accuracy, due to the ability of those models to more accu-
rately reflect sample distribution in parameter space. The ability
to classify samples with substantially improved accuracy has direct
implications for improved detection of regions of degradation in
MR images, so that multiparametric analysis may lead to substan-
tially improved ability to detect early cartilage degradation. Finally,
we note that our results support the applicability of this approach
to the nondestructive evaluation of other biomaterials using MRI.
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